Search results for "Total variation flow"

showing 7 items of 7 documents

Local and nonlocal weighted pLaplacian evolution equations with Neumann boundary conditions

2011

In this paper we study existence and uniqueness of solutions to the local diffusion equation with Neumann boundary conditions and a bounded nonhomogeneous diffusion coefficient g ≥ 0, {ut = div (g|∇u|p-2∇u) in ]0; T[×Ωg|∇u|p-2u·n = 0 on ]0; T[×∂Ω; for 1 ≤ p < ∞. We show that a nonlocal counterpart of this diffusion problem is ut(t; x)= ∫ω J(x-y)g(x+y/2)|u(t; y)-u(t; x)| p-2 (u(t; y)-u(t; x)) dy in ]0; T[× Ω,where the diffusion coefficient has been reinterpreted by means of the values of g at the point x+y/2 in the integral operator. The fact that g ≥ 0 is allowed to vanish in a set of positive measure involves subtle difficulties, specially in the case p = 1.

Neumann boundary conditionsDiffusion equationGeneral MathematicsOperator (physics)Nonlocal diffusionMathematical analysisMeasure (mathematics)P-laplacianBounded functionNeumann boundary conditionp-LaplacianUniquenessDiffusion (business)Total variation flowMathematicsMathematical physics
researchProduct

Regular 1-harmonic flow

2017

We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of a Euclidean space, i.e. the gradient flow of the total variation functional restricted to maps taking values in the manifold. We restrict ourselves to Lipschitz initial data. We prove uniqueness and, in the case of a convex domain, local existence of solutions to the flow equations. If the target manifold has non-positive sectional curvature or in the case that the datum is small, solutions are shown to exist globally and to become constant in finite time. We also consider the case where the domain is a compact Riemannian manifold without boundary, solving the homotopy problem for 1-harmonic maps under some …

Applied Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Total variation flow; harmonic flow; well-posednessRiemannian manifoldLipschitz continuitySubmanifold01 natural sciencesManifoldDomain (mathematical analysis)35K51 35A01 35A02 35B40 35D35 35K92 35R01 53C21 68U10010101 applied mathematicsMathematics - Analysis of PDEsFlow (mathematics)FOS: MathematicsMathematics::Differential GeometrySectional curvature0101 mathematicsAnalysisAnalysis of PDEs (math.AP)MathematicsCalculus of Variations and Partial Differential Equations
researchProduct

Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere

2013

Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.

Unit spheren-sphereGeodesicApplied MathematicsMathematical analysisA domainharmonic flowsOctant (solid geometry)non-convex variational problems1-harmonic flowlower semi-continuity and relaxation; total variation flow; 1-harmonic flow; non-convex variational problems; image processing; geodesic; partial differential equations; harmonic flowsimage processingHomogeneoustotal variation flowNeumann boundary conditionJumppartial differential equationslower semi-continuity and relaxationgeodesicMathematics
researchProduct

THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE

2014

We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…

Unit spherenonconvex variational problemsriemannian manifolds with boundaryGeodesicn-sphereharmonic flows68U1053C2253C4435K9235K67Neumann boundary conditionpartial differential equations49J45MathematicsNumerical Analysisnonlinear parabolic systems; lower semicontinuity and relaxation; total variation flow; 1-harmonic flow; image processing; harmonic flows; partial differential equations; image processing.; geodesics; riemannian manifolds with boundary; nonconvex variational problemslower semicontinuity and relaxation58E20Applied MathematicsMathematical analysis49Q201-harmonic flowimage processingFlow (mathematics)35K55Metric (mathematics)total variation flowVector fieldnonlinear parabolic systemsBalanced flowAnalysisgeodesics
researchProduct

Some qualitative properties for the total variation flow

2002

We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…

Dirichlet problemAsymptotic behaviourMathematical analysisGeodetic datumElliptic boundary value problemOperator (computer programming)Dirichlet eigenvaluePropagation of the supportFlow (mathematics)Neumann boundary conditionNonlinear parabolic equationsPoint (geometry)Total variation flowEigenvalue type problemAnalysisMathematics
researchProduct

Large solutions for nonlinear parabolic equations without absorption terms

2012

In this paper we give a suitable notion of entropy solution of parabolic $p-$laplacian type equations with $1\leq p<2$ which blows up at the boundary of the domain. We prove existence and uniqueness of this type of solutions when the initial data is locally integrable (for $1<p<2$) or integrable (for $p=1$; i.e the Total Variation Flow case).

Entropy solutionsIntegrable systemMathematical analysisp-LaplacianMathematics::Analysis of PDEsGeodetic datumNonlinear parabolic equationsMathematics - Analysis of PDEsentropy solutions; large solutions; p-laplacian; total variation flowp-LaplacianFOS: MathematicsLarge solutionsUniquenessTotal variation flowEntropy (arrow of time)AnalysisMathematicsAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

A nonlocal p-Laplacian evolution equation with Neumann boundary conditions

2008

In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p &gt; 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous t…

Neumann boundary conditionsMathematics(all)Diffusion equationApplied MathematicsGeneral MathematicsNonlocal diffusionMathematical analysisp-LaplacianFlow (mathematics)Neumann boundary conditionp-LaplacianInitial value problemUniquenessBoundary value problemCalculus of variationsTotal variation flowMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct